Selecting parameters for an ARIMA model involves determining p, d, and q through a combination of analysis and testing. Start by identifying if differencing (d) is necessary to make the time series stationary. Perform a unit root test like the Augmented Dickey-Fuller (ADF) test, and if the p-value is high, apply differencing until the series achieves stationarity. A non-stationary series can lead to inaccurate forecasts. Next, identify p (AR order) and q (MA order) by examining the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. For example, a PACF plot that cuts off after lag k suggests an AR(k) process, while an ACF plot that cuts off indicates an MA process. Trial-and-error can also help fine-tune these parameters. Tools like grid search and information criteria, such as AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion), assist in evaluating models with different parameters. Use these to balance model complexity and accuracy. Modern libraries like Python's statsmodels simplify parameter selection through built-in functions like auto_arima, which automatically tests combinations of p, d, and q.
How do you choose parameters for an ARIMA model?

- Optimizing Your RAG Applications: Strategies and Methods
- Getting Started with Milvus
- How to Pick the Right Vector Database for Your Use Case
- The Definitive Guide to Building RAG Apps with LlamaIndex
- Getting Started with Zilliz Cloud
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does a query language like SQL differ from a document query language?
Query languages like SQL (Structured Query Language) and document query languages serve different purposes in interactin
What are common applications of IR?
Information retrieval (IR) has a wide range of applications, primarily focused on helping users find relevant informatio
What is content-based filtering?
Content-based filtering is a recommendation technique used primarily in information retrieval systems and recommendation